Главная » Статьи » Мои статьи » С++ для начинающих

2.3. Объектный подход (Часть2)

Мы до сих пор ничего не сказали о том, как будем инициализировать наш массив.

Одна из самых распространенных ошибок при программировании (на любом языке) состоит в том, что объект используется без предварительной инициализации. Чтобы помочь избежать этой ошибки, С++ обеспечивает механизм автоматической инициализации для определяемых пользователем классов – конструктор класса.

Конструктор – это специальная функция-член, которая вызывается автоматически при создании объекта типа класса. Конструктор пишется разработчиком класса, причем у одного класса может быть несколько конструкторов.

Функция-член класса, носящее то же имя, что и сам класс, считается конструктором. (Нет никаких специальных ключевых слов, позволяющих определить конструктор как-то по-другому.) Мы уже сказали, что конструкторов может быть несколько. Как же так: разные функции с одинаковыми именами?

В С++ это возможно. Разные функции могут иметь одно и то же имя, если у этих функций различны количество и/или типы параметров. Это называется перегрузкой функции. Обрабатывая вызов перегруженной функции, компилятор смотрит не только на ее имя, но и на список параметров. По количеству и типам передаваемых параметров компилятор может определить, какую же из одноименных функций нужно вызывать в данном случае. Рассмотрим пример. Мы можем определить следующий набор перегруженных функций min(). (Перегружаться могут как обычные функции, так и функции-члены.)

// список перегруженных функций min()

// каждая функция отличается от других списком параметров

#include <string>

 

int min (const int *pia,int size);

int min (int, int);

int min (const char *str);

char min (string);

string min (string,string);

Поведение перегруженных функций во время выполнения ничем не отличается от поведения обычных. Компилятор определяет нужную функцию и помещает в объектный код именно ее вызов. (В главе 9 подробно обсуждается механизм перегрузки.)

Итак, вернемся к нашему классу IntArray. Давайте определим для него три конструктора:

class IntArray {

public:

  explicit IntArray (int sz = DefaultArraySize);

  IntArray (int *array, int array_size);

  IntArray (const IntArray &rhs);

  // ...

private:

  static const int DefaultArraySize = 12;

}

Первый из перечисленных конструкторов

IntArray (int sz = DefaultArraySize);

называется конструктором по умолчанию, потому что он может быть вызван без параметров. (Пока не будем объяснять ключевое слово explicit.) Если при создании объекта ему задается параметр типа int, например

IntArray array1(1024);

то значение 1024 будет передано в конструктор. Если же размер не задан, допустим:

IntArray array2;

то в качестве значения отсутствующего параметра конструктор принимает величину DefaultArraySize. (Не будем пока обсуждать использование ключевого слова static в определении члена DefaultArraySize: об этом говорится в разделе 13.5. Скажем лишь, что такой член данных существует в единственном экземпляре и принадлежит одновременно всем объектам данного класса.)

Вот как может выглядеть определение нашего конструктора по умолчанию:

IntArray::IntArray (int sz)

{

  // инициализация членов данных

  _size = sz;

  ia = new int[_size];

 

  // инициализация элементов массива

  for (int ix=0; ix<_size; ++ix)

    ia[ix] = 0;

}

Это определение содержит несколько упрощенный вариант реализации. Мы не позаботились о том, чтобы попытаться избежать возможных ошибок во время выполнения. Какие ошибки возможны? Во-первых, оператор new может потерпеть неудачу при выделении нужной памяти: в реальной жизни память не бесконечна. (В разделе 2.6 мы увидим, как обрабатываются подобные ситуации.) А во-вторых, параметр sz из-за небрежности программиста может иметь некорректное значение, например нуль или отрицательное.

Что необычного мы видим в таком определении конструктора? Сразу бросается в глаза первая строчка, в которой использована операция разрешения области видимости (::):

IntArray::IntArray(int sz);

Дело в том, что мы определяем нашу функцию-член (в данном случае конструктор) вне тела класса. Для того чтобы показать, что эта функция на самом деле является членом класса IntArray, мы должны явно предварить имя функции именем класса и двойным двоеточием. (Подробно области видимости разбираются в главе 8; области видимости применительно к классам рассматриваются в разделе 13.9.)

Второй конструктор класса IntArray инициализирует объект IntArray значениями элементов массива встроенного типа. Он требует двух параметров: массива встроенного типа со значениями для инициализации и размера этого массива. Вот как может выглядеть создание объекта IntArray с использованием данного конструктора:

int ia[10] = {0,1,2,3,4,5,6,7,8,9};

IntArray iA3(ia,10);

Реализация второго конструктора очень мало отличается от реализации конструктора по умолчанию. (Как и в первом случае, мы пока опустили обработку ошибочных ситуаций.)

IntArray::IntArray (int *array, int sz)

{

  // инициализация членов данных

  _size = sz;

  ia = new int[_size];

 

  // инициализация элементов массива

  for (int ix=0; ix<_size; ++ix)

    ia[ix] = array[ix];

}

Третий конструктор называется копирующим конструктором. Он инициализирует один объект типа IntArray значением другого объекта IntArray. Такой конструктор вызывается автоматически при выполнении следующих инструкций:

IntArray array;

 

// следующие два объявления совершенно эквивалентны:

IntArray ia1 = array;

IntArray ia2 (array);

Вот как выглядит реализация копирующего конструктора для IntArray, опять-таки без обработки ошибок:

IntArray::IntArray (const IntArray &rhs )

{

  // инициализация членов данных

  _size = rhs._size;

  ia = new int[_size];

 

  // инициализация элементов массива

  for (int ix=0; ix<_size; ++ix)

    ia[ix] = rhs.ia[ix];

}

В этом примере мы видим еще один составной тип данных – ссылку на объект, которая обозначается символом &. Ссылку можно рассматривать как разновидность указателя: она также позволяет косвенно обращаться к объекту. Однако синтаксис их использования различается: для доступа к члену объекта, на который у нас есть ссылка, следует использовать точку, а не стрелку; следовательно, мы пишем rhs._size, а не rhs->_size. (Ссылки рассматриваются в разделе 3.6.)

Заметим, что реализация всех трех конструкторов очень похожа. Если один и тот же код повторяется в разных местах, желательно вынести его в отдельную функцию. Это облегчает и дальнейшую модификацию кода, и чтение программы. Вот как можно модернизировать наши конструкторы, если выделить повторяющийся код в отдельную функцию init():

class IntArray {

public:

  explicit IntArray (int sz = DefaultArraySize);

  IntArray (int *array, int array_size);

  IntArray (const IntArray &rhs);

  // ...

private:

  void init (int sz,int *array);

  // ...

};

 

// функция, используемая всеми конструкторами

void IntArray::init (int sz,int *array)

{

  _size = sz;

  ia = new int[_size];

 

  for (int ix=0; ix<_size; ++ix)

    if ( !array )

      ia[ix] = 0;

    else

      ix[ix] = array[ix];

}

 

// модифицированные конструкторы

IntArray::IntArray (int sz) { init(sz,0); }

IntArray::IntArray (int *array, int array_size)

     { init (array_size,array); }

IntArray::IntArray (const IntArray &rhs)

     { init (rhs._size,rhs.ia); }

Имеется еще одна специальная функция-член – деструктор, который автоматически вызывается в тот момент, когда объект прекращает существование. Имя деструктора совпадает с именем класса, только в начале идет символ тильды (~). Основное назначение данной функции – освободить ресурсы, отведенные объекту во время его создания и использования. Применение деструкторов помогает бороться с трудно обнаруживаемыми ошибками, ведущими к утечке памяти и других ресурсов. В случае класса IntArray эта функция-член должна освободить память, выделенную в момент создания объекта. (Подробно конструкторы и деструкторы описаны в главе 14.) Вот как выглядит деструктор для IntArray:

class IntArray {

public:

  // конструкторы

  explicit IntArray (int sz = DefaultArraySize);

  IntArray (int *array, int array_size);

  IntArray (const IntArray &rhs);

 

  // деструктор

  ~IntArray() { delete[] ia; }

  // ...

private:

  // ...

};

Теперь нам нужно определить операции доступа к элементам массива IntArray. Мы хотим, чтобы обращение к элементам IntArray выглядело точно так же, как к элементам массива встроенного типа, с использованием оператора взятия индекса:

IntArray array;

int last_pos = array.size()-1;

 

int temp = array[0];

array[0] = array[last_pos];

array[last_pos] = temp;

Для реализации доступа мы используем возможность перегрузки операций. Вот как выглядит функция, реализующая операцию взятия индекса:

#include <cassert>

 

int& IntArray::operator[] (int index)

{

  assert (index >= 0 && index < _size);

  return ia[index];

}

Обычно для проектируемого класса перегружают операции присваивания, операцию сравнения на равенство, возможно, операции сравнения по величине и операции ввода/вывода. Как и перегруженных функций, перегруженных операторов, отличающихся типами операндов, может быть несколько. К примеру, можно создать несколько операций присваивания объекту значения другого объекта того же самого или иного типа. Конечно, эти объекты должны быть более или менее "похожи”. (Подробно о перегрузке операций мы расскажем в главе 15, а в разделе 3.15 приведем еще несколько примеров.)

Определения класса, различных относящихся к нему констант и, быть может, каких-то еще переменных и макросов по принятым соглашениям помещаются в заголовочный файл, имя которого совпадает с именем класса. Для класса IntArray мы должны создать заголовочный файл IntArray.h. Любая программа, в которой будет использоваться класс IntArray, должна включать этот заголовочный файл директивой препроцессора #include.

По тому же самому соглашению функции-члены класса, определенные вне его описания, помещаются в файл с именем класса и расширением, обозначающим исходный текст С++ программы. Мы будем использовать расширение (напомним, что в разных системах вы можете встретиться с разными расширениями исходных текстов С++ программ) и назовем наш файл IntArray.C.

Упражнение 2.5

Ключевой особенностью класса С++ является разделение интерфейса и реализации. Интерфейс представляет собой набор операций (функций), выполняемых объектом; он определяет имя функции, возвращаемое значение и список параметров. Обычно пользователь не должен знать об объекте ничего, кроме его интерфейса. Реализация скрывает алгоритмы и данные, нужные объекту, и может меняться при развитии объекта, никак не затрагивая интерфейс. Попробуйте определить интерфейсы для одного из следующих классов (выберите любой):

(a) матрица

(b) булевское значение

(c) паспортные данные  человека

(d) дата

(e) указатель

(f) точка

Упражнение 2.6

Попробуйте определить набор конструкторов, необходимых для класса, выбранного вами в предыдущем упражнении. Нужен ли деструктор для вашего класса? Помните, что на самом деле конструктор не создает объект: память под объект отводится до начала работы данной функции, и конструктор только производит определенные действия по инициализации объекта. Аналогично деструктор уничтожает не сам объект, а только те дополнительные ресурсы, которые могли быть выделены в результате работы конструктора или других функций-членов класса.

Упражнение 2.7

В предыдущих упражнениях вы практически полностью определили интерфейс выбранного вами класса. Попробуйте теперь написать программу, использующую ваш класс. Удобно ли пользоваться вашим интерфейсом? Не хочется ли Вам пересмотреть спецификацию? Сможете ли вы сделать это и одновременно сохранить совместимость со старой версией?



[1] Объявление функции inline – это всего лишь подсказка компилятору. Однако компилятор не всегда может сделать функцию встроенной, существуют некоторые ограничения. Подробнее об этом сказано в разделе 7.6.

Категория: С++ для начинающих | Добавил: Vayolet (28.05.2010)
Просмотров: 995 | Теги: С++ учебник, Объектный подход в С++ | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *: